AN INVERSE BOUNDARY VALUE PROBLEM FOR A SECOND ORDER ELLIPTIC EQUATION IN A RECTANGLE
نویسندگان
چکیده
منابع مشابه
Nonlocal Boundary Value Problem for Second Order Abstract Elliptic Differential Equation
We establish conditions that guarantee Fredholm solvability in the Banach space Lp of nonlocal boundary value problems for elliptic abstract differential equations of the second order in an interval. Moreover, in the space L2 we prove in addition the coercive solvability, and the completeness of root functions (eigenfunctions and associated functions). The obtained results are then applied to t...
متن کاملA two-phase free boundary problem for a semilinear elliptic equation
In this paper we study a two-phase free boundary problem for a semilinear elliptic equation on a bounded domain $Dsubset mathbb{R}^{n}$ with smooth boundary. We give some results on the growth of solutions and characterize the free boundary points in terms of homogeneous harmonic polynomials using a fundamental result of Caffarelli and Friedman regarding the representation of functions whose ...
متن کاملAn Inverse Boundary-value Problem for Semilinear Elliptic Equations
We show that in dimension two or greater, a certain equivalence class of the scalar coefficient a(x, u) of the semilinear elliptic equation ∆u + a(x, u) = 0 is uniquely determined by the Dirichlet to Neumann map of the equation on a bounded domain with smooth boundary. We also show that the coefficient a(x, u) can be determined by the Dirichlet to Neumann map under some additional hypotheses.
متن کاملAn Inverse Boundary Value Problem of Determining Three Dimensional Unknown Inclusions in an Elliptic Equation
In this paper we consider an inverse boundary value problem of determining three dimensional unknown inclusions in an elliptic equation in a bounded domain Ω ⊂ R3 from finite boundary measurements on ∂Ω. We will show that polyhedral inclusions in Ω can be uniquely determined up to their convex edges from a single boundary measurement on ∂Ω.
متن کاملExistence of positive solutions for a boundary value problem of a nonlinear fractional differential equation
This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Modelling and Analysis
سال: 2014
ISSN: 1392-6292,1648-3510
DOI: 10.3846/13926292.2014.910278